Planning
Time |
Event |
|
08:30 - 09:00
|
Breakfast (SCAI) |
|
09:00 - 09:15
|
Introduction |
|
09:15 - 09:45
|
Tree-based variational inference for Poisson log-normal models: application to the gut microbiome - Alexandre Chaussard |
|
09:45 - 10:30
|
Keynote: AI, diagnostic tests and cancer - Michael Blum |
|
10:30 - 11:00
|
Coffee break |
|
11:00 - 11:30
|
Self-supervised representation learning on gene expression data for phenotype prediction - Kevin Dradjat |
|
11:30 - 12:00
|
Learning Single-cell Drug Responses Using Differential Autoencoder Model - Wang Shuhui |
|
12:00 - 12:30
|
scPRINT: A transcriptomic foundation model for inferring molecular interactions - Jérémie Kalfon |
|
12:30 - 14:30
|
Lunch and Posters |
|
14:30 - 15:15
|
Keynote: Deep learning for phylogenetic inference of species diversification - Hélène Morlon |
|
15:15 - 15:45
|
Transformers for EpiDemiological DYnamics: from genomic data to epidemiological parameters - Vincent Garot |
|
15:45 - 16:15
|
Coffee break |
|
16:15 - 16:45
|
ProtMamba: a homology-aware but alignment-free protein state space model - Cyril Malbranke |
|
16:45 - 17:15
|
Expanding the space of self-reproducing RNA using generative probabilistic models - Martin Weigt |
|
17:15 - 17:30
|
Closing remarks |
|
|