Monday, December 9, 2024

Time Event (+)
08:30 - 09:00 Breakfast (SCAI)  
09:00 - 09:15 Introduction  
09:15 - 09:45 Tree-based variational inference for Poisson log-normal models: application to the gut microbiome - Alexandre Chaussard  
09:45 - 10:30 Keynote: AI, diagnostic tests and cancer - Michael Blum  
10:30 - 11:00 Coffee break  
11:00 - 11:30 Self-supervised representation learning on gene expression data for phenotype prediction - Kevin Dradjat  
11:30 - 12:00 Learning Single-cell Drug Responses Using Differential Autoencoder Model - Wang Shuhui  
12:00 - 12:30 scPRINT: A transcriptomic foundation model for inferring molecular interactions - Jérémie Kalfon  
12:30 - 14:30 Lunch and Posters  
14:30 - 15:15 Keynote: Deep learning for phylogenetic inference of species diversification - Hélène Morlon  
15:15 - 15:45 Transformers for EpiDemiological DYnamics: from genomic data to epidemiological parameters - Vincent Garot  
15:45 - 16:15 Coffee break  
16:15 - 16:45 ProtMamba: a homology-aware but alignment-free protein state space model - Cyril Malbranke  
16:45 - 17:15 Expanding the space of self-reproducing RNA using generative probabilistic models - Martin Weigt  
17:15 - 17:30 Closing remarks